skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Emanuel, Kerry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyclone Jasper struck northern Queensland in mid-December, 2023, causing extensive flooding stemming from torrential rain. Many stations reported rainfall totals exceeding 1 m, and a few surpassed 2 m, possibly making Jasper the wettest tropical cyclone in Australian history. To be better prepared for events like Jasper, it is useful to estimate the probability of rainfall events of Jasper’s magnitude and how that probability is likely to evolve as climate warms. To make such estimates, we apply an advanced tropical cyclone downscaling technique to nine global climate models, generating a total of 27,000 synthetic tropical cyclones each for the climate of the recent past and that of the end of this century. We estimate that the annual probability of 1 m of rain from tropical cyclones at Cairns increases from about 0.8% at the end of the 20th century to about 2.3% at the end of the 21st, a factor of almost three. Interpolating frequency to the year 2023 suggests that the current annual probability of Jasper’s rainfall is about 1.2%, about a 50% increase over that of the year 2000. Further analysis suggests that the primary causes of increasing rainfall are stronger cyclones and a moister atmosphere. 
    more » « less
  2. Observational data have long suggested that in the tropics, when the troposphere locally warms, the lower stratosphere locally cools. Here, the observed anti-correlation between tropospheric and lower stratospheric temperature is confirmed—the lower stratosphere cools by approximately 2 degrees per degree of warming in the mid-troposphere. This anti-correlation is explained through a recently proposed theory holding that there is a quasi-balanced response of the stratosphere to tropospheric heating [J. Lin, K. Emanuel, Tropospheric thermal forcing of the stratosphere through quasi-balanced dynamics.J. Atmos. Sci.(2024).]. The local-scale anti-correlation between tropospheric and lower stratospheric temperature also holds when considering climate change—where the troposphere has been anomalously warming relative to the zonal mean, the lower stratosphere has been anomalously cooling, and vice versa. This suggests that zonally asymmetries in tropospheric temperature trends will be reflected in that of the lower stratospheric temperature trends. The zonally asymmetric trends are also found to be comparable in magnitude to the mean temperature trends in the lower stratosphere, highlighting the importance of the pattern of warming. The results and proposed theory suggest that in addition to forcing via wave-dissipation, the lower stratosphere can also be subject to direct forcing by the troposphere, through quasi-steady, quasi-balanced dynamics. 
    more » « less
  3. Abstract Proxy‐based reconstructions of long‐term Atlantic tropical cyclone (TC) variability reveal low‐frequency oscillations in regional TC landfalls over the Common Era. However, the limited spatial coverage and increased uncertainty of the proxy records complicates assessments of this feature. Here we present a new multi‐ensemble set of synthetic TCs downscaled from the Last Millennium Reanalysis project, which is based on sea surface temperatures that more accurately reflect past conditions. Throughout ensemble members, there are coherent multi‐centennial shifts in landfalls with persistent intervals of increased (decreased) occurrence along the eastern US concurrent with inverse activity in the southwest Caribbean and Gulf of Mexico, associated with basin‐scale redistributions of storm tracks. The emergent TC‐dipole from modeled climate provides context and support for its presence within proxy‐reconstructions. Furthermore, dipole recurrence across ensembles demonstrates that it arises from sea surface temperature‐informed climate processes. However, timing differences between ensembles indicate that transient atmospheric variability influences dipole position. 
    more » « less
  4. Abstract Severe convection, responsible for hazards such as tornadoes, flash floods, and hail, is usually preceded by abundant convective available potential energy (CAPE). In this work, we use a Lagrangian approach to study the buildup of anomalously large values of CAPE from 2012 to 2013 in various regions. Nearly all extreme values of CAPE arise from surface fluxes underneath a layer of convective inhibition (the CIN layer) over several diurnal cycles, but the origin of the CIN layer and the diurnal cycle of surface fluxes differ around the world. In some regions, such as North America and Europe, the air above the boundary layer must be much warmer than usual to form this CIN layer, whereas in other regions, especially the Middle East and central Africa, a CIN layer is common. Additionally, high CAPE occurrences that are over land (those in the Americas, Europe, Africa, and Southeast Asia) tend to lose their CIN layers before the time of maximum CAPE due to large diurnal cycles of sensible heating, whereas those that occur over coastal waters (in the Middle East, Northern Australia, South Asia, and the Mediterranean) usually retain substantial convective inhibition. Uniquely, CAPE in Southeast Australia often builds up due to cooling aloft rather than to boundary layer warming. These results show that one hoping to understand or predict CAPE patterns must understand a variety of mechanisms acting in different regions. 
    more » « less
  5. Abstract The atmospheric science community includes both weather and climate scientists. These two groups interact much less than they should, particularly in the United States. The schism is widespread and has persisted for 50 years or more. It is found in academic departments, laboratories, professional societies, and even funding agencies. Mending the schism would promote better, faster science. We sketch the history of the schism and suggest ways to make our community whole. 
    more » « less
  6. Sediment cores from blue holes have emerged as a promising tool for extending the record of long‐term tropical cyclone (TC) activity. However, interpreting this archive is challenging because storm surge depends on many parameters including TC intensity, track, and size. In this study, we use climatological‐hydrodynamic modeling to interpret paleohurricane sediment records between 1851 and 2016 and assess the storm surge risk for Long Island in The Bahamas. As the historical TC data from 1988 to 2016 is too limited to estimate the surge risk for this area, we use historical event attribution in paleorecords paired with synthetic storm modeling to estimate TC parameters that are often lacking in earlier historical records (i.e., the radius of maximum wind for storms before 1988). We then reconstruct storm surges at the sediment site for a longer time period of 1851–2016 (the extent of hurricane Best Track records). The reconstructed surges are used to verify and bias‐correct the climatological‐hydrodynamic modeling results. The analysis reveals a significant risk for Long Island in The Bahamas, with an estimated 500‐year stormtide of around 1.63 ± 0.26 m, slightly exceeding the largest recorded level at site between 1988 and 2015. Finally, we apply the bias‐corrected climatological‐hydrodynamic modeling to quantify the surge risk under two carbon emission scenarios. Due to sea level rise and TC climatology change, the 500‐year stormtide would become 2.69 ± 0.50 and 3.29 ± 0.82 m for SSP2‐4.5 and SSP5‐8.5, respectively by the end of the 21st century. 
    more » « less
  7. Tropical cyclones have long been known to be powered by turbulent enthalpy fluxes from the ocean’s surface and slowed by turbulent momentum fluxes into the surface. Here, we review evidence that the development and structure of these storms are also partially controlled by turbulence in the outflow near the storm’s top. Finally, we present new research that shows that tropical cyclone-like, low-aspect-ratio vortices are most likely in systems in which the bottom heat flux is controlled by mechanical turbulence, and the top boundary is insulating. 
    more » « less
  8. Abstract The steady response of the stratosphere to tropospheric thermal forcing via an SST perturbation is considered in two separate theoretical models. It is first shown that an SST anomaly imposes a geopotential anomaly at the tropopause. Solutions to the linearized quasigeostrophic potential vorticity equations are then used to show that the vertical length scale of a tropopause geopotential anomaly is initially shallow, but significantly increased by diabatic heating from radiative relaxation. This process is a quasi-balanced response of the stratosphere to tropospheric forcing. A previously developed, coupled troposphere–stratosphere model is then introduced and modified. Solutions under steady, zonally symmetric SST forcing in the linearβ-plane model show that the upward stratospheric penetration of the corresponding tropopause geopotential anomaly is controlled by two nondimensional parameters: 1) a dynamical aspect ratio and 2) a ratio between tropospheric and stratospheric drag. The meridional scale of the SST anomaly, radiative relaxation rate, and wave drag all significantly modulate these nondimensional parameters. Under Earthlike estimates of the nondimensional parameters, the theoretical model predicts stratospheric temperature anomalies 2–3 larger in magnitude than that in the boundary layer, approximately in line with observational data. Using reanalysis data, the spatial variability of temperature anomalies in the troposphere is shown to have remarkable coherence with that of the lower stratosphere, which further supports the existence of a quasi-balanced response of the stratosphere to SST forcing. These findings suggest that besides mechanical and radiative forcing, there is a third way the stratosphere can be forced—through the tropopause via tropospheric thermal forcing. Significance StatementUpward motion in the tropical stratosphere, the layer of atmosphere above where most weather occurs, is thought to be controlled by weather disturbances that propagate upward and dissipate in the stratosphere. The strength of this upward motion is important since it sets the global distribution of ozone. We formulate and use simple mathematical models to show the vertical motion in the stratosphere can also depend on the warming in the troposphere, the layer of atmosphere where humans live. We use the theory as an explanation for our observations of inverse correlations between the ocean temperature and the stratosphere temperature. These findings suggest that local stratospheric cooling may be coupled to local tropospheric warming. 
    more » « less
  9. Abstract It has been proposed that tropical cyclogenesis rates can be expressed as the product of the frequency of “seeds” and a transition probability that depends on the large-scale environment. Here it is demonstrated that the partitioning between seed frequency and transition probability depends on the seed definition and that the existence of such a partition does not resolve the long-standing issue of whether tropical cyclone frequency is controlled more by environmental conditions or by the statistics of background weather. It is here argued that tropical cyclone climatology is mostly controlled by regional environment and that the response of global tropical cyclone activity to globally uniform radiative forcing may be more controlled by the regionality of the response than by the mean response. 
    more » « less